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Via Taylor series, we associate with a difference stencil Lh approximating Lu := au, + hu, 
its modified equation: L’u = Lu + (h/2){ Au,, + 2Bu, + CU,} + O(h*). By rotating axes to 
eliminate the 2Bu, term, the principle axes through which the diffusion in Lh acts is 
calculated. Interestingly, for many schemes proposed for 2D transport problems these axes 
have little to do with the “streamline” and “crosswind” directions of the continuous problem. 
Several examples are considered from this point of view. 0 19~ Academic press, IIIC. 

1. INTRODUCTION 

The behavior of numerical methods in the solution of convection-diffusion 
problems and conservation laws is quite well understood in one space dimension 
(e.g., [l, 4, 5, 10, 13, 18, 191). However, it is a continuing challenge to find the 
correct method for using these insights when designing schemes for multi-dimen- 
sional transport and slightly diffusive transport problems. Many possible extensions 
of 1D methods have been proposed. The goal of this report is to show that the 
leading order diffusive effects in these methods can be compared by means of a few 
simple calculations from the theory of modzj?ed equations [6, 201. In particular, 
given a criteria one wishes in a method, one can frequently design a method with 
this criteria in mind, compare existing methods w.r.t. this criteria, or use the 
analysis to optimize the selection of undetermined parameters in a given method. 

As an application in Section 2, we define and study the principal axes of diffusion 
which give the directions of the leading order diffusive effects in difference schemes 
for 2D transport problems and compare these in known schemes with the 
streamline and crosswind directions. 

It is desirable that these axes are aligned with the streamline and crosswind direc- 
tions for several reasons. The first reason is alignment of these axes with respect to 
the streamline and crosswind directions helps control the leading order grid orien- 
tation effects, which can cause major difficulties in complex transport problems, 
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Ewing [23]. Also, it is well documented that excessive smearing of fronts which are 
skew to the mesh is associated with some types of artificial diffusion, see e.g., 
Brooks and Hughes [21, Figs. 3.6, p. 218; 3.7, p. 219; 3.1, p. 2081, Leonard [22], 
and Masenge [24, Chap. 41. Thus, it is desirable to have a clear description of the 
magnitude and action of the artificial diffusion which is implicit in various methods. 
Ideally, one wishes to restrict its magnitude as well as control its principal axes. 

Section 3 compares these axes with the streamline and cross-wind directions for 
a number of schemes proposed for 2D transport problems. This comparison was 
expedited by the work of Roos [ 161 who collected and compared a number of such 
schemes with respect to sufficient conditions for uniform-in-s convergence for 2D 
convection-diffusion equations. 

2. PRINCIPAL AXES OF DIFFUSION 

Given the transport operator Lu = au, + bu,, we consider a 9-point box type 
finite difference operator Lh which can be represented as the following 3 x 3 matrix 

Note that this is scaled so that a,~,, etc. are 0( 1). Assume that Lh is consistent 
with L: for smooth functions U(X, y) 

LhU(X, y) = Lu(x, y) + O(h). (2.1) 

Equation (2.1) places the following restrictions on the coefficients: 

up = a, + a, + a, + a, + une + us&$ + use + unw 

u,-ua,,+u,,+u,,-ua,~,-ua,,.= --a (2.2) 

a,-~~+a,,,-us,-~~,+a,,,= -b, 

where h is the mesh spacing, which is assumed here to be uniform. Indeed, by 
carrying out the Taylor series to one more term we obtain 

LEMMA 2.1. For smooth functions U(X, y) 

Lh@, Y) = L&c y) - 2 {Au,, + 2Bu, + Cu,} + O(h’), 

where 

(2.3) 

A = a, + a,. + une + usw + use + unw , 

B = am. + usw - use - an,,,, (2.4) 

c = a, + a, + une + u,, + u,, + unw,. i 
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Thus, the leading order effects of diffusion in the scheme Lh are described 
through the operator: 

Eu : = Au,, + 2Bu,, + Cu,. 

In the examples we consider E is (possibly degenerate) elliptic: 

B2<AC. 

(2.5) 

(2.6) 

In fact, for positive type schemes much more can be said. We quote one result: 

PROPOSITION (Layton [14]). Suppose Lh is a positive type, i.e., aP > 0, and a,, 
a a,, a,, a,,, asw, anw, a, are all nonnegative (or - Lh is of positive type). Then 
(5:6) holds, infact, B<min{A, C}. 

Schematically this is represented by Fig. 1 
To analyze E we preform the obvious step of rotating axes to eliminate the 2Bu,, 

term. Indeed, defining Oh via: 

tan(2Gh)=-A$= 2(ane + asw - ase - GJ 
a,+a,-aa,-aa, ’ 

0 < Oh <n/2, A # C. (2.8) 

We rotate axes through angle Oh, under which E reduces to Eu = Au,, + 2Bu, + 

%Y 2 Eu = A”u, + cu, (see Fig. 2). 

DEFINITION 2.1. The 2 - j axes are the principal uxes of diffusion for Lh. If 
A” > 2; (resp. c ) then 2 (resp. jj) is the major axis of diffusion (resp. 5) is minor axis 
of diffusion. 

One interest in the principal axes of diffusion lies in the fact that for some 
proposed schemes they do not coincide with the streamline and crosswind directions. 
This can be enforced in others through appropriate selection of parameters. 

I 
t=B/C 

4 

Positive Type Region 

FKXIRE 1 
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FIGURE 2. Analysis of quadratic form associated with operator E. 

Another interest in the principal axes of diffusion is that they describe the leading 
order diffusive effects in a very precise sense. Indeed, the solution of the continuous 
“modified equation” can be shown to be a higher order model of the approximate 
solution than is the solution of the continuous problem u(x, y). (This result is 
similar in spirit to ones for modified equations used in other contexts see, e.g., 
Hedstrom [6] and Trefethen [20].) To be precise, let U, w be the solutions of, 
respectively, 

L,u =f(x, Y) in Q= [0, l] x [0, 11, u = g(x, Y) on asz, 

--E dw -; {Aw,, + 2Bw, + Cw,} + aw, + bWy =f(x, y) in Sz, 

w=g on af2, 

where A, B, C are constructed from the uniform mesh, consistent, 9-point box 
discretization Lt of L, as described above. Then, one can prove, for example, by 
standard techniques. 

PROPOSITION 2.1. (1) Supposef, g are continuous and, B2 < AC then w exists and 
is unique. (2) Suppose u and w exist, are sufficiently smooth, and Lt is a positive type 
discretization of L,. Then, 

whereas 

max Iui,i- u(xi, yj)l < C(u)h, 
(.c. Y,) 

max luii- w(xi, yj)l < C(w)h2. 
(x,3 Y,) 

(3) If the discretization matrix arising from Lt has inverse uniformly bounded in some 
operator norm, II.II, and u and w are sufficiently smooth, then 

IIUq-U(Xi, Yj)ll < C(u)h, 
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whereas 

Before we consider examples, we enumerate three degenerate cases, which include 
first-order upwind methods and streamline diffusion type methods. 

Case 1 (no preferred direction). 2 = c, or B = 0, A = C, in which case 
Eu = constant* Au and the diffusion acts uniformly in all directions. One example 
is the usual first-order upwind method (Example 1). 

Case 2 (pure streamline diffusion). B2 = AC. In this case there is a vh = (ah, bh) 
for which Eu = vh .grad[vh .grad u]. When vh can be chosen to be (a, b) then this 
is a pure streamline diffusion method [8,4] (i.e., when Oh = 0 := arctan(b/a)). 

Case 3. E = 0. In this case Lh is at least formally second-order accurate and the 
third-order dispersive effects will predominate. The Taylor series analysis must be 
carried out to one or two extra terms. This is also the case of some accurate 
implementations of streamline diffusion methods. 

3. EXAMPLES 

We now survey a number of methods that have been proposed for the convection 
diffusion problem (we shall retain the choice of sign, plus or minus, multiplying E 
of the original derivation of Lt as this will not influence the subsequent analysis): 

L,u := +E Au + au, + bu, =f(x, y). 

We set E =0 in these schemes and calculate Oh. Remarkably, for many schemes 
Oh # 0 := arctan(b/a)) and, in fact, Oh - 0 is bounded away from zero as h + 0. 
For other schemes, it is, however, possible to adjust free parameters to have 
Oh = 0. We can check when Oh = 0 directly from the stencil by noting (when a # b) 

2 tan 0 2ab 
tan(2Q) = 1 -t&Q=-’ 

Thus, we calculate from (3.1), (2.8): 

tan(2Qh) - tan(2Q) = 2(ane + asw - ase - anw) 2ab -- 
a,+a,-an-as a2 - b2 

EXAMPLE 1. Upwind jkite difference methods. Lh is represented by (- 1 < 
cr< +l, -l</I< +l, and the minus sign for E) 



PRINCIPAL AXES OF DIFFUSION 341 

[ : 

(-1+&-f 

$l+P)-; . 

-2&2,;+4; f(1 +a)-; , 

$-l+p)-; . 1 (3.3) 

where ~1, /I are parameters, which are frequently chosen to make (3.3) exact on, e.g., 
exponentials, Kellogg [ 121, Roos [16], and to ensure that Lh is of positive (or 
negative) type. 

We calculate directly that B = 0 so that the principal axes of upwind methods are 
always the mesh-directions. When a = /I = - 1 (pure upwind) it follows that 
EU = const. . AU so that, as is well known, the diffusion in pure upwind methods acts 
globally without preferred directions. 

EXAMPLE 2. A skew-upwind scheme (proposed by Raithby [ 151). Taking a > 0, 
b > 0, and the minus sign for E, the stencil is given by 

We calculate from (3.4) and Lh that Oh- 0 =0 if and only if 
(a + b)/(a - b) = 2ab/(a* - b*). Hence, scheme (3.4) has the correct principal axes of 
diSfusion ifand only ij-u=b#O, u=O, or b=O. 

EXAMPLE 3. A weighted Bubnov-Galerkin scheme (proposed in Heinrich and 
Zienkiewicz [7]). With CI, /I free parameters, using linear shape functions and 
quadratic weights with an additive perturbation on a uniform mesh gives a stencil 
represented by (taking the plus sign for E) 
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We calculate (and simplify) 

aB+crb tan(2@) = - 
au-bb’ 

Thus, the scheme (3.5) has rhe correct principal axes of diffusion provided a, B are 
chosen so that 

2ab a/?+ab -= 
a’-b2 au-b/I 

(alternately, with t = a/b, u = (2t/(t2 - l))(t - p) + t). One obvious choice is u = a, 
B=b. 

EXAMPLE 4. A realigned skew upwind scheme. The skew upwind scheme can be 
modified to realign it with the streamlines, as follows. The discretization is represen- 
ted by (a 2 0, b > 0, and the minus sign for E) 

Here a, /? are chosen to realign the scheme by requiring Oh = Q as follows: 

tan(2eh) = 2 
a(l-a)+b(l-fl) 

a-b 

Requiring that oh = 0, restricts the parameters to 

D=l- -&+fu -a), 

(3.6) 

(3.7) 

which realigns the skew upstream method. Interestingly, with this choice of 
parameters the realigned skew upwind scheme becomes a positive type scheme ! Its 

stencil is represented by 

& -- 
h 
[: -1 -1 -1 4 -1 . . 1 + 

-a2 a2+ab+b2 

a+b a+b ’ 
ab -b= -- 

a+b a+b . 
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EXAMPLE 5. Upwind finite element scheme (due to Tabata [17]). Let 
B = [0, l] x [0, l] is divided into uniform rectangles and then subdivided into 
triangles by lines with slope 1. Using Co piecewise linear shape functions and the 
centroids of the triangles to produce the “dual” domain in Tabata’s procedure 
yields a stencil of the form (when a > 26 > 0 and the plus sign for E) 

-;[ {I 1; {I]+;[ / f;;) “i”]. (aZ2b). 

We compute 

tan(2@) = g. 

In this case Oh = 0 if and only if t = a/b; 

P(t) := t3 + 8t2 - 5t - 1 = 0. 

It is straightforward to check that Oh = 0 for only one value of 0 in the interval 
0 <a < 2b. For all other choices of (a, b), Oh # 0. Thus, this scheme is not aligned 
with the streamline directions in general. 

EXAMPLE 6. Upwind Bubnov-Galerkin F.E.M. Using triangular elements, linear 
shape functions, and quadratic weights, the upwind F.E.M. of Huyakorn [9] gives 
a stencil of the form (taking the plus sign for E) 

1 
-1 

1 1 

-1 -2 -1 11 . 

1 1 . (3.8) 
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Thus, after a calculation, we conclude: 

tan(2@) = 
aq - aoz3 + bee, - bee, 

aclz - aa - bcr, + ba, + aal ’ 

Requiring Oh = 0 gives the equation 

ata2 - a3) + haI - a31 2ab 

a(a,+cc,--cI,)-b(cl,--~)=a2’ 

which yields the linear constraint on c.c~,~,~ : 

cc,(a2b - b3 - 2a2b) + a2(a3 + ab2 - 2a’b) + cx3(a3 - 3ab2 + a2 + b3) = 0. (3.9) 

Thus, provided the parameters a1,2,3 are chosen so that (3.9) holds, the principal axes 
of diffusion of (3.8) are aligned with the streamlines. 

Test 1, Method 1, Hz1130 
XMIN= 0.00000E+00 XMAX= 1.0000 

YMIN= 0.00000E+00 YMAX= 1.0000 

ZMIN= 0.00000E+00 ZMAX= 1.0000 
3-D PRESENTATION ANGLE= 30.0000 

FIG. 3. First-order upwind outflow is at rear of figure. 
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4. AN ILLUSTRATION 

We consider the slightly diffusive transport problem of Section 3 with 
a = cos( 17.5”), b = sin( 17.5”), and f = 0. The square is divided by a characteristic 
line through (0,0.3) with slope b/u. Boundary conditions are taken to be u = 1 
above the line and u = 0 below the line so that the exact solution is a step function 
with a sharp transition layer along the distinguished characteristic. Figures 3, 4, and 
5 are plots of the numerical solution of this B.V.P. with h = 8, E = h2 using, respec- 
tively, first-order upwind, Raithby’s skew upwind, and the realigned skew upwind 
scheme. In Fig. 3 we take the plus sign for E and the minus sign in Figs. 4 and 5. 
Note that the “outflow” side of the step is the back (y-axis) in Fig. 3 and the front 
(x = 1, 0 < y < 1) in Figs. 4 and 5. 

The realigned skew upwind scheme happens to be a positive type method so it 
is subject to the crosswind diffusion implicit in all positive type schemes (see Fig. 1) 

Test 1, Method 2, H=1/30 
XMlN= 0.00000E+00 XMAX= 1.0000 

YMIN= 0.00000E+00 YMAX= 1.0000 

ZMIN= 0.00000E+00 ZMAX= 1.1768 

3-D PRESENTATION ANGLE= 30.0000 

FIG. 4. Skew upwind scheme outflow is at front of figure. 
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Test 1, Method 3, H=1/30 
XMIN= 0.00000E+00 XMAX= 1.0000 
YMIN= 0.00000E+00 YMAX= 1.0000 
ZMIN= 0.00000E+00 ZMAX= 1.0000 

3-D PRESENTATION ANGLE= 30.0000 

FIG. 5. Realigned skew upwind outflow is at front of figure 

Raithby’s scheme (Fig. 4) is not of positive type, so it suffers oscillations near the 
transition region. 

The realigned skew upwind scheme is, in some sense, intermediate between 
Raithby’s scheme and first-order upwind. Namely, it does not smear the front 
nearly as much as first-order upwind+ompare the outflow boundaries in Figs. 3 
(x = 0) and 5 (x = 1). On the other hand, it is also a positive type scheme so its 
stability properties are better than Raithby’s scheme. 
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